Starset Society 中文镜像站
solar-harvesting-system-has-potential-to-generate-solar-power-24/7

太阳能收集系统具有全天候生产太阳能的潜力

Solar harvesting system has potential to generate solar power 24/7

The great inventor Thomas Edison once said, “So long as the sun shines, man will be able to develop power in abundance.” His wasn’t the first great mind to marvel at the notion of harnessing the power of the sun; for centuries inventors have been pondering and perfecting the way to harvest solar energy.

伟大的发明家托马斯·爱迪生曾经说过:“只要太阳照耀着,人类就能大量地发展能源。”他并不是第一个惊叹于利用太阳能量这一概念的伟人;几个世纪以来,发明家们一直在思考和完善收集太阳能的方法。

They’ve done an amazing job with photovoltaic cells which convert sunlight directly into energy. And still, with all the research, history and science behind it, there are limits to how much solar power can be harvested and used — as its generation is restricted only to the daytime.

他们在将阳光直接转化为能量的光伏电池方面取得了惊人的成就。尽管如此,在所有的研究、历史和科学背后,太阳能的收获和使用是有限的,因为它的产生仅限于白天。

A University of Houston professor is continuing the historic quest, reporting on a new type of solar energy harvesting system that breaks the efficiency record of all existing technologies. And no less important, it clears the way to use solar power 24/7.

休斯顿大学的一位教授正在继续这一历史性的探索,他报告了一种新型太阳能收集系统,该系统打破了所有现有技术的效率记录。同样重要的是,它为全天候使用太阳能扫清了道路。

“With our architecture, the solar energy harvesting efficiency can be improved to the thermodynamic limit,” reports Bo Zhao, Kalsi Assistant Professor of mechanical engineering and his doctoral student Sina Jafari Ghalekohneh in the journal Physical Review Applied. The thermodynamic limit is the absolute maximum theoretically possible conversion efficiency of sunlight into electricity.

Kalsi机械工程助理教授赵博和他的博士生Sina Jafari Ghalekohneh在《应用物理评论》杂志上报告说:“通过我们的建筑,太阳能收集效率可以提高到热力学极限。”热力学极限是阳光转化为电能的理论上可能的绝对最大转换效率。

Finding more efficient ways to harness solar energy is critical to transitioning to a carbon-free electric grid. According to a recent study by the U.S. Department of Energy Solar Energy Technologies Office and the National Renewable Energy Laboratory, solar could account for as much as 40% of the nation’s electricity supply by 2035 and 45% by 2050, pending aggressive cost reductions, supportive policies and large-scale electrification.

找到更有效利用太阳能的方法对于向无碳电网过渡至关重要。根据美国能源部太阳能技术办公室和国家可再生能源实验室最近的一项研究,到2035年,太阳能将占到美国电力供应的40%,到2050年将占到45%,前提是大力降低成本、出台支持政策和大规模电气化。

How Does it Work?

它是如何工作的?

Traditional solar thermophotovoltaics (STPV) rely on an intermediate layer to tailor sunlight for better efficiency. The front side of the intermediate layer (the side facing the sun) is designed to absorb all photons coming from the sun. In this way, solar energy is converted to thermal energy of the intermediate layer and elevates the temperature of the intermediate layer.

传统的太阳能热光伏(STPV)依靠中间层来调整太阳光以获得更好的效率。中间层的正面(面向太阳的那一面)被设计成吸收所有来自太阳的光子。这样,太阳能转化为中间层的热能,使中间层的温度升高。

But the thermodynamic efficiency limit of STPVs, which has long been understood to be the blackbody limit (85.4%), is still far lower than the Landsberg limit (93.3%), the ultimate efficiency limit for solar energy harvesting.

但stpv的热力学效率极限(85.4%)仍远低于太阳能收集的最终效率极限Landsberg极限(93.3%)。

“In this work, we show that the efficiency deficit is caused by the inevitable back emission of the intermediate layer towards the sun resulting from the reciprocity of the system. We propose nonreciprocal STPV systems that utilize an intermediate layer with nonreciprocal radiative properties,” said Zhao. “Such a nonreciprocal intermediate layer can substantially suppress its back emission to the sun and funnel more photon flux towards the cell.

“在这项工作中,我们表明,效率赤字是由系统的互易导致中间层不可避免地向太阳反向发射造成的。我们提出了非互易的STPV系统,它利用了具有非互易辐射特性的中间层。”“这种非互易的中间层可以在很大程度上抑制它对太阳的反向发射,并将更多的光子通量引导到细胞中。

Read more at ScienceDaily.com

ScienceDaily.com阅读更多

图片出处

STARSET_Mirror