Starset Society 中文镜像站

TSS独家报道:天王星和海王星上的钻石雨可能成为地球人利用聚变能源的关键

TSS EXCLUSIVE: Diamond Rain on Uranus and Neptune May Hold Key to Fusion Power on Earth

Neptune and Uranus are called the “ice giants“ of our Solar System because 80 percent or more of their mass is made up of water, ammonia and methane–compounds known as “ices” in the field of astronomy.

海王星和天王星被称为太阳系的 “冰巨星”,因为它们至少80%的质量是由水、氨和甲烷提供的,这些化合物在天文学领域被统称为 “冰”。

Unlike Earth, these two planets do not have a solid surface. Instead, they have atmospheres mainly composed of hydrogen and helium, and small amounts of methane that gradually merge with a superhot and superdense fluid of icy materials that cover a small, rocky core. 

与地球不同,这两颗行星没有固体表面。相反,它们的大气层主要由氢气和氦气以及少量的甲烷组成,这些大气层逐渐与覆盖着小型岩石核心的超热和超密集的冰雪物质流体融合。

Uranus and Neptune are interesting worlds to study, but current knowledge about these planets is relatively scant because of their distance from Earth– these icy giants lie in the outermost parts of the Solar System.

天王星和海王星是很值得研究的世界,但目前对这些行星的了解相对较少,因为它们离地球很远——这些冰冻的巨行星位于太阳系的最外围。

Voyager 2, to date, is the only space mission that has gathered data from Uranus and Neptune, but mathematical modeling and laboratory experiments suggest that the chemical make-up of these worlds enable the formation of so-called diamond rains.

到目前为止,旅行者2号是唯一从天王星和海王星收集了数据的太空任务,但数学模型和实验室实验表明,这些世界的化学构成能够形成所谓的钻石雨。

How Diamond Rains Form
钻石雨如何形成

Heat and pressure intensify deeper into these two planets. Simulations reveal that the high temperature and pressure can break down the molecules of methane, a form of hydrocarbon, which isolates the carbon atoms from hydrogen. 

在这两个星球的深处,温度与压力强化。模拟显示,高温和高压可以分解甲烷分子——一种将碳原子与氢分离的碳氢化合物。 

Scientists found that the isolated carbon atoms could link together and the resulting chains get squeezed into a diamond structure. The crystalline formations would then drop deeper like diamond rains through the mantle and vaporize when they become too hot. 

科学家们发现,孤立的碳原子可以连接在一起,最终这种碳链被挤压成钻石结构。然后,这些晶体会像钻石雨一样穿过地幔落到更深的地方,当它们变得太热时就会蒸发。 

In a 2017 study published in the Nature Astronomy, Dominik Kraus, from the research laboratory Helmholtz Zentrum Dresden-Rossendorf, and colleagues used the SLAC National Accelerator Laboratory’s Linac Coherent Light Source (LCLS) X-ray laser to demonstrate how methane can be broken down into diamonds.

在2017年发表在Nature Astronomy上的一项研究中,来自研究实验室Helmholtz Zentrum Dresden-Rossendorf的Dominik Kraus及其同事使用SLAC国家加速器实验室的Linac相干光源(LCLS)X射线激光器来演示甲烷如何能够被分解成钻石。

The researchers recreated the chemical processes that happen inside Neptune and Uranus by creating shockwaves in polystyrene, a kind of plastic made up of carbon and hydrogen, to generate intense heat. The material served as a substitute for the planetary methane on Neptune and Uranus. The simulation revealed that diamonds form at temperatures and pressure that resemble the conditions in the inner parts of the two planets. 

研究人员通过在聚苯乙烯(一种由碳和氢组成的塑料)中产生冲击波以产生强烈的热量,重现了海王星和天王星内部发生的化学过程。这种材料可作为海王星和天王星上的行星甲烷的替代品。模拟显示,钻石在与这两个行星内部的条件相似的温度和压力下形成。 

“From the surface towards the core, the isentropes of Uranus and Neptune intersect a temperature–pressure regime in which methane first transforms into a mixture of hydrocarbon polymers, whereas, in deeper layers, a phase separation into diamond and hydrogen may be possible,” the researchers wrote in their study

研究人员在他们的研究报告中写道:”从表面到核心,天王星和海王星的等高线与一个温度-压力体系相交,在这个体系中,甲烷首先转变为碳氢化合物聚合物的混合物,而在更深的层中,可能会有相分离为钻石和氢气。 “

“Here we show experimental evidence for this phase separation process obtained by in situ X-ray diffraction from polystyrene (C8H8) n samples dynamically compressed to conditions around 150 GPa and 5,000 K; these conditions resemble the environment around 10,000 km below the surfaces of Neptune and Uranus.”

“这里我们展示了这种相分离过程的实验证据,这些证据是通过原位X射线衍射从聚苯乙烯(C8H8)ₙ 样品动态压缩到150GPa和5000K左右的条件下获得的;这些条件类似于海王星和天王星表面以下10000公里左右的环境。”

In a follow-up study published in Nature Communications in 2020, Kraus and colleagues used a new technique known as X-ray Thomson scattering to measure how chemical elements behave and mix deep below the icy giants. 

在2020年发表在Nature Communications上的一项后续研究中,克劳斯及其同事使用一种被称为X射线汤姆森散射的新技术来测量化学元素在冰巨星深处的行为及混合方式。

The researchers were able to observe how hydrogen and carbon atoms separate in response to intense pressure and temperature that simulate the environment in the inner parts of Uranus and Neptune. 

研究人员能够观察到氢和碳原子如何在模拟天王星和海王星内部环境的强大压力和温度下分离。

“Here they see how two elements separate, like getting mayonnaise to separate back into oil and vinegar,” said LCLS Director Mike Dunne.

“在这里,他们看到两个元素是如何分离的,就像让蛋黄酱重新分离成油和醋。”LCLS的总管Mike Dunne如是说

Advancing Research on Fusion Power
推进聚变能源研究

Studies on the diamond rain phenomenon occurring in Neptune and Uranus offer insights on the  inner workings of planets in the Solar System. Besides this, they may also lead to practical applications on Earth.

对发生在海王星和天王星上的钻石雨现象的研究提供了对太阳系中行星内部运作的深入了解。除此之外,它们也可能导向其在地球上的实际应用。

The researchers said that they may also help improve experiments that explore the generation of energy from nuclear fusion. Nuclear fusion is a high-energy process that fuels the stars, including the sun. It happens when the nuclei of small atoms combine to form one or more heavier nuclei, releasing massive amounts of energy in the process. 

研究人员表示,这些现象还可能帮助改进探索核聚变产生能量的实验。核聚变是一个高能量的过程,为包括太阳在内的恒星提供燃料。当小原子的原子核结合成一个或多个更重的原子核时,它就会发生,在这个过程中释放出大量的能量。

Some fusion experiments involve a fuel of two different forms of hydrogen surrounded plastic that gets blasted with lasers to reach conditions similar to the interior of planets. 

一些核聚变实验涉及一种由两种不同形式的氢气组成的燃料,围绕着塑料,用激光轰击,以达到类似于行星内部的条件。 

“It’s a new way to study the evolutionary history of planets and planetary systems, as well as supporting experiments towards potential future forms of energy from fusion,” Kraus said.

“这是一种研究行星和行星系统进化历史的新方法,同时也支持对未来潜在的聚变能源形式的实验。”Kraus表示

Researchers have been studying the process hoping that it could eventually be harnessed to provide a sustainable source of power on Earth. Unfortunately, fusion power remains elusive, but the findings and methodologies used in studies investigating diamond rains on Uranus and Neptune could lead to the advancement of research on fusion energy. 

研究人员一直在研究这个过程,希望它最终可以被利用来为地球提供可持续的动力来源。不幸的是,核聚变能源仍然难以捉摸,但弄清天王星和海王星上钻石雨的研究结果与研究方法可能会带来核聚变能源研究的进步。 

The X-ray Thomson scattering technique, which enables researchers to study how elements mix in non-crystal samples at extreme conditions, for instance, may shed light on some issues that hamper the development of fusion power.  

例如,X射线汤姆森散射技术使研究人员能够研究在极端条件下非晶体样品中的元素是如何混合的,它可能会阐明一些阻碍聚变动力发展的问题。 

“This research provides data on a phenomenon that is very difficult to model computationally: the ‘miscibility’ of two elements, or how they combine when mixed,” Dunne commented.

“这项研究提供了关于一种非常难以计算建模的现象的数据:两种元素的’混杂性’——即它们在混合时如何结合。”Dunne评论道。

“What they learn could offer insight into a key way fusion fails, in which the inert shell of a capsule mixes in with the fusion fuel and contaminates it so that it doesn’t burn.”

“他们所学到的东西可以提供对聚变失败的一个关键方式的洞察力,在这种情况下,胶囊的惰性外壳与聚变燃料混合在一起,污染了它,从而使它不能燃烧。”

The researchers hope that the technique will allow them to measure the microscopic mix of materials used in fusion experiments.

研究人员希望该技术将使他们能够测量聚变实验中使用的材料的微观组合。

“We want to understand if this process could occur in inertial confinement fusion implosions with plastic ablator capsules, as it would generate fluctuations that could grow and degrade the implosion performance,” said study researcher Tilo Doeppner, a physicist at the Lawrence Livermore National Laboratory (LLNL).

研究人员、劳伦斯·利弗莫尔国家实验室(LLNL)的物理学家Tilo Doeppner说:”我们想了解这一过程是否会发生在带有塑料消融器舱室的惯性约束核聚变内爆中,因为它将产生波动,可能增长并降低内爆性能。”

Researchers are conducting studies to find out how to feasibly control nuclear fusion. If that happens, the reactions can provide an endless supply of energy without the planet-warming greenhouse gas emissions that can exacerbate climate change. 

研究人员正在进行研究,以找出如何可行地控制核聚变。如果发生这种情况,核反应可以提供无穷无尽的能源供应,而不会出现会加剧气候变化的地球变暖的温室气体排放。 

STARSET_Mirror